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Abstract

This study analyzes the temporal evolution of the short-
term P-wave morphological variability (PWMYV) within
the one-hour interval immediately preceding the onset of
atrial fibrillation (AF) episodes. This PWMV is hypoth-
esized to be an index of vulnerable atrial substrate, al-
lowing to identify instability increases preceding the AF
episode onset. We analyzed 32 ambulatory ECG record-
ings from subjects with paroxysmal AF. For each i-th sub-
Jject and j-th AF episode, the PWMYV was characterized in
consecutive 2-min windows (k = 1...30) within the last
60 min before the AF onset. For each 2-min window, the
median absolute deviation (MAD) of the P wave signals
pidk (n); and the MAD energy normalized to the median
of the P wave energy in each subject E:3 (k) were mea-
sured. Then, for each subject, a normalized median across
AF episodes was obtained, Eﬁ (k). A two-segment linear
function fit of E}(k) temporal evolution, by least squares
error (LSE) minimization was used to characterize the co-
hort dynamics. Analyzing the cohort dynamics of E,.(k),
a relative stability can be observed up to 8 minutes before
the AF episode onset, when Er(k‘) value starts increasing.
In conclusion, PWMYV can be monitored by quantifying the
P-wave short-time MAD relative energy, which shows an
increasing trend within the 8 minutes previous to the AF
onset.

1. Introduction

Atrial fibrillation (AF) is one of the most common car-
diac arrhythmias that is associated with a variety of po-
tential complications. Projections indicate an escalation
in the incidence and prevalence of this disease in forth-
coming years [1]. The presence of AF is associated with
an increased risk of mortality, as well as with a 4- to 5-
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fold higher risk of stroke [2]. These factors represent a
significant healthcare burden. It is therefore evident that
timely diagnosis and prediction of AF incidence can help
in allocating valuable healthcare resources to those most in
need, thereby significantly enhancing the effectiveness of
prevention strategies.

Surface ECG provides critical insights into the electrical
and structural properties of the atria, particularly evident
in P-waves [3]. This information is crucial to identify pa-
tients who currently have AF episodes or those at high risk
of developing AF in the near future [4,5]. Short-term P-
wave morphological variability (PWMYV) has been shown
to be a marker of atrial electrical instability and may re-
flect instabilities that precede AF [6-8]. The present study
aims to analyze the temporal evolution of PWMYV within
the hour preceding the onset of AF episodes and to identify
when noticeable PWMYV changes start to occur before an
AF episode.

2. Materials and Methods

2.1. Data Set

The study database, SPAFDB, contains 36 ambula-
tory Holter ECG recordings from patients diagnosed
with paroxysmal AF (mean[range] recording duration:
104[21-156] hours) [9]. One of the recordings was ex-
cluded from the analysis due to the absence of usable AF
annotations. Two additional recordings were discarded due
to suboptimal signal quality, and another was omitted since
it did not have any one-hour sinus rhythm segment pre-
ceding AF onset. Consequently, a total of 32 recordings
were subjected to analysis. Twenty-nine of the analyzed
recordings contained 3 leads sampled at 257 Hz, while the
remaining three recordings contained 12 leads sampled at
250 Hz. The specific lead configuration for the 3 lead
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recordings is unknown. All ECGs were resampled to 500
Hz and, for the 12-lead recording, only leads I, IT and III
were considered for the analysis.

2.2. ECG Preprocessing and Segmentation

The ECG preprocessing comprised two stages: First,
power line interference and muscle noise were attenuated
using a 6th-order Butterworth low-pass filter with cut-off
frequency of 40 Hz. Subsequently, baseline wander was
filtered using 6th order Butterworth high-pass filter with
cut-off frequency of 0.5 Hz.

Multilead QRS detection was performed by a wavelet-
based detector [10], and AF episodes were annotated using
an AF detector based on fuzzy logic [11], with posterior
manual verification by an AF specialist to complete the
annotation process.

All available 60-minute segments immediately preced-
ing the onset of an AF episode were selected. All AF
episodes without at least one hour of prior sinus rhythm
were excluded from the analysis.

2.3. Spatio-Temporal PCA-Based Lead Trans-

formation for P-Wave Enhancement

To improve the signal-to-noise ratio (SNR) and thus en-
hance the P-wave’s morphological features, we applied a
linear spatial lead transformation based on Principal Com-
ponent Analysis (PCA) to the three ECG leads, using the
methodology described in [12—-14]. The method operates
in two stages: (1) PCA transformation parameter (basis)
learning performed in a subset of the ECG segmented P
waves within each ECG segment, and (2) spatial projec-
tion of the ECG signal onto the derived PCA basis.

1) PCA Basis Learning

Each one-hour segment under analysis is expressed in
vector notation as x; = [z;(0),- -+ ,2;(M — 1)], with the
three leads piled together in the matrix X = [x7, 21" x11T
with M = 1,800,000 the total number of samples in the
segment.

At each j-th one-hour ECG segment, 60 individ-
ual P waves, starting 60 seconds after the beginning
of the segment, were segmented using a 140-ms win-
dow starting 220 ms before the QRS fiducial point, thus
guaranteeing that the P waves are completely included
within them. For each ¢-th beat, the segmented P wave
is prg = [P1.g(0), - ,prg(N —1)]T, where N = 70
is the number of samples in the P-wave window and
q€{1,2,...,Q = 60}. By combining the P-waves in the
3 leads, we obtain the matrix

[l

P, = [pl,qi P2,¢ Pg,q]T (D

for the ¢-th beat.

The n-th column of P, contains the voltage of all 3 leads
at sample n of the g-th beat. The P wave data matrix P was
then created by concatenating the P, matrices for the 60
beats:

P =[P, Py, ..., Pg|T. 2)

The spatial correlation matrix Rp of P was estimated as:

= 1 T
Rpr—NPP . 3)

The set of principal components was obtained by solving
the eigenvector equation for Rp [12]:

Rp¥ = TA 4)

where A is the eigenvalue diagonal matrix with the eigen-
values sorted in descending value order and ¥ contains in
each column the eigenvectors defining the PCA.

2) ECG Signal Projection

The three-lead ECG signals X were projected into the
space defined by the derived PCA basis ¥ using:

Y = ¢7X. (5)

Given that the basis ¥ was exclusively trained in P-waves

segments, the first component, y1 = [y1(0),-- ,y1(M — 1)),

of Y is expected to capture the majority of the energy, and
presumably variability, associated with P-wave morphol-

ogy.
24.  P-Wave Morphological Variability

After the PCA transformation, the P-wave morphologi-
cal variability is analyzed in the first transformed lead of
Y. The subsequent analyses are applied on y; lead (the
first principal component).

The P waves pfl’j **(n) are segmented following the same
procedure detailed in Section 2.3. QRS fiducial points in
y1 were detected using the wavelet-based delineator [10].

For each i-th subject and j-th AF episode, the one-hour,
pre-AF PWMYV is characterized in all the k-th consecutive
2-min windows, k € {1,--- , K = 30}, as:

1) The median absolute deviation (MAD) of the ¢-th
beat P waves p57¥ (n), is defined as:

PAiAD () = mad {py?* (n)}. (6)

2) The energy of pi}fng (n) normalized by the median of
the P wave energy in each subject (Ef:,mcd ), computed as:

YO (pikfmn))z’ o

Pryea

Eb (k) =

T
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where E}, is estimated as:

N
Ep,,, = med {Z (pf;j”“<n))2}- ®)

K,
T4 n=1

This normalization by EfDmed removes amplitude-dependent
biases in PWMYV measurements.

3) Patient-specific £ (k) patterns were evaluated by cal-
culating median values across all AF episodes for each
subject:

E; (k) = m;:d{Ei’j (k)} )

Patient specific normalization of each E’ (k) series is done
using the patient median value during the initial 10-minute
reference period (k € [1,5]) to isolate temporal PWMV
dynamics from inter-subject amplitude variations, thus en-
abling cohort-level comparative analysis.

Ei (k)

d {Ei(k
Jélﬁ,a{ i(k)}

Bi(k) = (10)

Finally, the dynamics of the P wave morphological vari-
ability (PWMYV) of the cohort was characterized by com-
puting the median across all patients
A two-segment least-squares linear function fit to the me-
dian F,.(k) series in the cohort is used to characterize the
cohort dynamics.

3. Results and Discussion

P-wave ensemble construction (Fig. 1) demonstrates
variable morphological variability across two-minute seg-
ments of recording #2. The p.7: (n) in the Figure values
reflects well ensemble dispersion.
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Figure 1: Two-minute segment P-wave ensemble and its corresponding
pll\}f/’j) (n) (Recording # 2). (a) A P-wave ensemble with low-variability,
(b) A P-wave ensemble with high-variability.
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In 56% of patients, the highest values of E’(k) were
observed in the last 30 minutes before the AF event, occa-
sionally exceeding twice the mean of Ei(k). Fig. 2 shows
the distribution of E! (k) values in the hour before AF on-
set in the 32-patient cohort. Both the median and disper-
sion of E’(k) values exhibit an upward trend when ap-
proaching the event, suggesting increased P-wave variabil-
ity in the last minutes before Af onset. This pattern may
indicate a progressive deterioration in the electrical orga-
nization of the atrium before the AF onset.

The distribution of £’ (k) at each temporal window was
compared against that of the initial window (-60 to -58 min
before the AF onset), by the Wilcoxon signed-rank test for
paired samples with p-values <0.05 being considered sig-
nificant. This methodology identifies the point at which
P-wave dynamics deviate significantly from the baseline.
The Wilcoxon test identified statistically significant differ-
ences exclusively in the final two pre-event windows: -4 to
-2 minutes (p = 0.036) and -2 to 0 minutes (p = 0.004).
These results demonstrate a significant increase in P-wave
variability energy during the terminal pre-AF phase, sup-
porting the hypothesis of accelerated atrial electrical desta-
bilization immediately preceding AF onset.
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Figure 2: Patient-specific temporal distribution of EL (k). Statistically
significant different distributions (Wilcoxon test, p < 0.05) relative to the
ones at reference baseline (-60 to -58 min) are indicated by (*).

Fig. 3 illustrates the temporal dynamics of E,.(k) (cor-
responding to the median values in Fig. 2) during the pre-
AF period. The analysis reveals two different trends: (1)
an initial relatively stable period (from minute -60 to ap-
proximately minute -8 ) with minimal E, (k) fluctuations,
followed by (2) a sustained increase beginning at minute -8
until AF onset. This transition point marks a fundamental
shift in P-wave dynamics, characterized by progressively
increasing E, (k) values that hypothetically reflects deteri-
oration of atrial electrical organization preceding AF initi-
ation. These observations align with the statistical signifi-
cance patterns demonstrated in Fig. 2.

These results support the hypothesis that PWMV re-
mains relatively stable during periods distant from AF
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Figure 3: E,.(k) and its two fitted linear segments. PWMYV increase

turning point is indicated by a dashed line

events but exhibits an abrupt intensification during the final
minutes preceding AF onset. This temporal pattern may
have significant implications for short-term impending ar-
rhythmia prediction, suggesting that MAD energy accu-
rately captures pre-AF PWMYV dynamics and could serve
as a novel AF risk biomarker.

4. Conclusion

P-wave morphological variability can be monitored by
quantifying their short-time MAD relative and subject nor-
malized energy, showing an increasing P-wave morpho-
logical variability trend in the last 8 minutes before AF
onset.
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